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Hinnt und Herrn Dr. H. Winzerer fiir viele fruchtbare
Diskussionen, Herrn Professor G. P. S. Occuiarint und
Herrn Professor C. Haenny fiir die leihweise Uberlas-
sung eines Teiles der Platten. Mein weiterer Dank gilt
den Scannerinnen der Universitit Bern fiir die
Auffindung der hier beschriebenen Ereignisse und fiir
die Hilfe bei der mikroskopischen Arbeit. Die Exposi-
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tion der Platten wurde vom Office of Naval
Research durchgefiihrt, wofiir noch besonders
Herrn Dr. A. Roserts gedankt sei. Die finanziellen
Mittel fiir die Emulsionen wurden vom Schweizer
Nationalfonds bewilligt, ein Teil der personel-
len Mittel von der Deutschen Forschungs-
gemeinschaft.

Numerische Berechnung der Stérung einer unendlich ausgedehnten
scheibenformigen Neutronensonde nach der Transporttheorie

Von H. MEisTEr

Aus dem Max-Planck-Institut fiir Physik, Gottingen
(Z. Naturforschg. 11 a, 579—585 [1956] ; eingegangen am 22. Mérz 1956)

Es wird die Winkelverteilung des Neutronenfeldes in der Umgebung einer unendlich ausgedehn-
ten Sonde sowie deren Aktivierungs- und Dichtestorung in Abhédngigkeit von der Sondendicke be-
rechnet nach einem Verfahren, das von Wick fiir ein isotropes Streugesetz angegeben worden ist.
Die Ergebnisse werden mit den nach der elementaren Diffusionstheorie gefundenen verglichen.

Nach der elementaren Diffusionstheorie wurde
von VicoN und Wirtz?! fiir eine unendlich ausge-
dehnte Scheibensonde als Dichtestorung
0—0() 3 Dy(ud) L

% _ = 2 —z/L
#(z) = 0s 2 2—Dy(ud) it

(1)
gefunden (g, = ungestorte Neutronendichte, o(z) =
durch die Sonde gestorte Dichte, o, =Dichte an der
Sondenoberfliche) und als Aktivierungsstorung
Gt _J34& 1
C —{4 ;-t 2}¢0(/“6)

(Cy=die dem ungestorten Neutronenfeld entspre-
chende Aktivierung, C = wirkliche Aktivierung im
gestorten Feld). Hierbei ist z die Ortskoordinate
senkrecht zur Sondenebene, A; die Transportweg-
linge und L die Diffusionslinge des die Sonde um-
gebenden Streumediums sowie PDy(xd) die von
Borae 2 angegebene Funktion

Doy(ud)=1—(1—ud)e “?+ 12 Ei(— ud)
(3)

der Schichtdicke 0 und des Absorptionskoeffizien-
ten u der Sondensubstanz. ,,Unendlich ausgedehnt®
heifit hier, daB die Ausdehnung der Sonde grof}
gegen die Diffusionslange ist.

Die elementare Diffusionstheorie beschriankt sich
bei der Entwicklung des differentiellen Neutronen-
flusses K (z, %) nach Kugelfunktionen auf die beiden
ersten Glieder, so daB} bei Angabe des Dichtever-

Ho=

(2)

! M. A. Vicox u. K. Wirrz, Z. Naturforschg. 9a, 286 [1954].

laufes auch die Winkelverteilung des Neutronen-
feldes festgelegt ist:

1 |
K(z, 7.9) =4 {Qv—/.t *(j)z

Dabei ist 9 der Winkel zwischen der Neutronen-
richtung und der positiven z-Achse. Die Absorp-
tionswahrscheinlichkeit fiir ein Neutron, das die
Sonde unter dem Winkel ¥ durchsetzt, ist e« %/l cos?!
bei Vernachlassigung der Streuung in der Sonden-
substanz. Wird das Neutronenfeld als symmetrisch
zur Sondenebene z =0 vorausgesetzt, so mul} es auf
der Sondenoberflache gegen den Halbraum z>0 die
Randbedingung

K(0,8) =endlesdl- K(0,7—9) (0<P<a/2) (5)

v) cos 19} . (4

erfilllen. Hierzu ist aber der elementare Ansatz
Gl. (4) nicht imstande.

Zu einer genaueren Berechnung des Neutronen-
feldes in der Sondenumgebung mufl daher auf die
Transportgleichung

.6grad K(;', -Q) +2totK(7’-6)
= [2(Q.9)K(r, 2) 42 (6)

(r = Ortsvektor, Q2 = Einheitsvektor der Neutronen-
richtung, 2, =totaler makroskopischer Wirkungs-

—

querschnitt, (£, ’) = differentieller Streuquer-
schnitt) zuriickgegriffen werden, die die Winkel-

2 W. Borug, Z. Phys. 120, 437 [1943].
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abhingigkeit des Neutronenfeldes explizit beriick-
sichtigt. Fiir den vorliegenden eindimensionalen Fall
vereinfacht sich diese Gleichung zu?

0¥ (z ¢

,\o ( ) —'tot II(‘ ‘)

~ +1
- Z Sle P (YO P, @)
-1

wobei 2aK(z,9) =¥ (z,{) und cos?={ gesetzt
wurde. Der differentielle Streuquerschnitt E(Q, (08
in Gl. (6) héangt nur vom Cosinus (.-, Q) ={, des
Streuwinkels ab und ist in Gl. (7) bereits nach

Kugelfunktionen P;({;) entwickelt worden:

so lautet die Transportgleichung

9% (z,0)

cz

+¥(z0) ="

/11/(4 Fyde+3¢E, / Yz, ) d;'}.
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)

—“/:23]‘:(:0) Pl(:o) d:o-

-1
Beriicksichtigt man nur die beiden ersten Glieder
+1
So=2a [ Z(&) dty=3,
1

Sy=2a [ S Ldto=6 2, (8)
-1

(s =makroskopischer Streuquerschnitt, fo = mitt-
lerer Cosinus des Streuwinkels) und wihlt die mitt-
lere freie Wegldnge /i, =1/2, als Lingeneinheit
mit

a= ‘S:\/:tot = /.'mt/;'a ’ (9)

+1
(10)

=1

1. Mit verhaltnismélig geringem Rechenaufwand kann man eine gute Naherungslosung dieser Integro-
differentialgleichung gewinnen, wenn man die Integrale nach dem Mittelwertverfahren durch Summen dis-
kreter Funktionswerte approximiert?. An Stelle der Funktion ¥ (z, {) der Orts- und Winkelvariablen wer-
den 2 n Funktionen ¥;(z) (i= *1... £ n) der Ortskoordinate z eingefithrt, die den Neutronenflul an
der Stelle z mit der Richtung { im Intervall AJ; um ; angeben. Die Integrale in Gl. (10) werden dann

durch gewogene Summen der ¥; dargestellt:

+n

+1
[¥()d =D e W) f"sp(é &y ar = Sa, LWz .
=1

]——n

Jj=0

(11)

1——n
i=0

Dabei erfilllen die Gewichtsfaktoren a; unter anderem die Relationen®

n

Zai=1,

i=1

Za;:i2=l/3.

Die Transportgleichung (10) geht dadurch in ein System von 2 n linearen homogenen Differentialgleichun-

gen erster Ordnung tber:

+n +n
dll, 1— 5 2 - ’
;50 L) = ;{Za,. Wy(z) +380 D ail Y’j(z)} (i=%1...%n). (12)
Durch den Exponentialansatz ¥;(z) =c; e #? ldBt sich dieses System auf das lineare Gleichungssystem fiir
die C; +n +n
“ =
(1=l 6= 2a{za]c]+3\,~02a]\1c,}( +1... +n) (13)
j=—n j=—n
j=0 j=0

zuriickfithren, das sich leicht 16sen 1dBt, da die Summen auf der rechten Seite nicht von i abhéngen. Setzt

man tn tn
I1==q 3(1—a) > .
5 Za]c,—C, e goza]‘\j(’j=8. (14)
j==n -
j=+0 7=0

3 S. Grasstoxe u. M. C. Eprusp, The Elements of Nuclear

Reactor Theory, MacMillan, London 1953, p. 389.
4 G. C. Wick, Z. Phys. 121, 702 [1943].

5 Fr. A. WitLers, Methoden der praktischen Analysis, de
Gruyter, Berlin 1950.



NUMERISCHE BERECHNUNG DER STORUNG EINER NEUTRONENSONDE 581

so konnen die Unbekannten ¢; durch die gemeinsamen Groflen C, B und x ausgedriickt werden:

i

_C+{iB

1-Cix

(15)

Es soll zunidchst die Abfallkonstante x der Exponentialfunktion so bestimmt werden, dafi das Gleichungs-
system (13) eine nichttriviale Losung fir die Unbekannten ¢; hat. Dies ist nach Gl. (15) genau dann der
Fall, wenn die Konstanten C und B nicht beide verschwinden. Durch Einsetzen von Gl. (15) in Gl. (13)

ergibt sich die Beziehung

1—(j =
j=—n

Jj=0

i=0

+n

1;»@{ i aCTLB) , 5 :"Z aj fi(C+:jB)]) —C+

%
,,’B,

1-Cjx '

die fiir alle {; identisch erfiillt sein muB. Koeffizientenvergleich in bezug auf {; fithrt auf das homogene
Gleichungssystem fiir die beiden Unbekannten C und B:

n n
Bl Y tas] BT ~o0,
1—C2%2 1—a 1252
\j=1 y j=1

j=1

Dabei wurde vorausgesetzt, dal die Werte der
Winkelvariablen {; symmetrisch zu (=0 gewihlt
worden sind ({_;= —{;), und es wurden je zwei
entsprechende Summanden zusammengefal3t.

Die Konstanten C und B kénnen nur dann gleich-
zeitig von Null verschieden sein, wenn die Determi-
nante des Systems (16) verschwindet. Aus dieser
Forderung ergibt sich nach elementarer Umrechnung

die Gleichung

n

(1-2a) Z‘U,Qi'ﬁ,;o GPa)

17 x?

(17)

i=1

Dies ist die gesuchte Bestimmungsgleichung fiir den
Parameter der Exponentialfunktion. Wie man leicht
sieht, hat diese Gleichung n-ten Grades genau n
positiv-reelle Wurzeln fiir %2, liefert also n Paare
von z-Werten, die sich jeweils nur durch ihr Vor-
zeichen unterscheiden. Die allgemeine Losung setzt
sich daher additiv aus 2n Exponentialfunktionen
mit den entsprechenden Abfallkonstanten x; zu-
sammen:

+n
Vi(z) = Zcik e Rz,

Cr+Si Bk

Cik = = .
! 1—=Cinr

Die von der Wurzel x; abhingigen Koeffizienten ¢;,
C und B haben dabei einen zusitzlichen Index %
erhalten (k= *1... Zn).

(16)

n . B - .
R B3 e 1 )
Ld1 =042 32 1-(2»2 3{(1—a)

j=1

Durch das Gleichungssystem (16) ist fiir ein be-
stimmtes #; das Verhaltnis

(18)

festgelegt. Der Wert des Koeffizienten Cj; bleibt noch
frei verfiighar. Die allgemeine Lésung hat daher
die Form

+n
i 1+4+-&; B
Wi(a) = Y Corme ™, yw=1Tolt.  (19)
el o
k=—n
E=0

Durch Vorgabe eines bestimmten Streumediums
mit
1 A F
1—a ot

und Wahl der Neutronenrichtungen {; mit den zu-
gehorigen Gewichtsfaktoren a; sind die GroBen x,
fi und 7 ein fur allemal festgelegt. Fiir ein speziel-
les Problem sind dann nur die Koeffizienten C; an
die geforderten Randbedingungen anzupassen. Die
Rechnung vereinfacht sich natiirlich sehr wesentlich
fiir den Fall isotroper Streuung ({,=0), wie er
z. B. bei Wick # durchgefiihrt worden ist. In diesem

Fall werden die §,=0.
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Die Genauigkeit dieses Verfahrens ist durch die
Genauigkeit gegeben, mit der die Integrale nach
dem Mittelwertverfahren dargestellt werden.

2. Nach diesem Verfahren wird nun die Neutronen-
verteilung an einer unendlich ausgedehnten Sonde
bestimmt. Das ungestorte Feld ¥ sei isotrop und
unabhéngig von z. Es geniigt der zu Gl. (10) ge-
horigen inhomogenen Gleichung mit einer konstan-
ten raumlichen Quelldichte und wird so normiert.

1
dal} der skalare Neutronenflul voy= | ¥,dl den
-1
Wert Eins hat, d. h. ¥,=1/2 ist.

Der bei Anwesenheit der Sonde in der Ebene z =0
sich einstellende Neutronenflul setzt sich wegen der
Linearitat der Transportgleichung additiv zusammen
aus dem ungestorten Flul ¥, und dem ,,Storflufl“
AY¥ (z,{), der der homogenen Transportgleichung
(10) geniigt:

W(z,0) =W,— AV (z,0). (20)

Wegen der Symmetrie der Neutronenverteilung zu
z=0 kann man sich auf die Betrachtung des rechten
Halbraumes beschrinken. Da die ungestorte Neu-
tronenverteilung fest vorgegeben ist, muf} sich das
Storfeld so einstellen, dafl die Randbedingung Gl.
(5) an der Sonde erfiillt ist:

AY](O’ ;') _e—‘ué/:.Ag/(O’ __./:)

—(1—ew) ¥y, (£>0).

Wird fir das Storfeld die allgemeine Losung
Gl. (19) der Transportgleichung eingesetzt, so er-
gibt sich ein inhomogenes Gleichungssystem zur
Bestimmung der freien Konstanten Cj,

(21)

ch(?ik—e*""/:i'}’4/,») (22)
k=1 =(l—e ) ¥, (i=1...n).

Das Storfeld 4% (z, {) muB fir hinreichend groBes z
gegen Null gehen, daher fallen die Glieder mit ne-
gativem x in der allgemeinen Losung fir z>0 fort
und es ist in Gl. (22) nur iiber positive k& zu sum-
mieren.

Hat man die Konstanten C; aus Gl. (22) be-
stimmt, so ist dadurch der Neutronenflul nach Gl.
(19) festgelegt. Durch einfache Summation erhalt
man die Neutronendichte

+n

r1
ov= f‘]’(z, Hde= Zai Y.(2)
=1 i=—n
i+0

(23)

H. MEISTER

und entsprechend die in der Sonde hervorgerufene

Aktivierung !
0

C=2-[¥(0,0) L] QA—erdlsl) &
-1

n

(24)
=2)a_ ¥ _;(0)|&| (1 —erdlil).

1

i

Aus diesen Werten lassen sich die Sondenstérungen

nach Gl. (1) und (2) leicht berechnen.

3. Es wurde die Neutronenverteilung an Sonden
verschiedener Dicke (u 0 zwischen 0,02 und 1,0) be-
rechnet. Als Streumedium wurde Graphit mit folgen-
den Eigenschaften zugrunde gelegt:

Transportwegldnge A= 2,7 cm

(entspr. Dichte=1,6 g/cm?),
Diffusionsldnge L=42,9 cm,
Atomgewicht A=12

Hieraus erhélt man den mittleren Cosinus des Streu-
winkels {y bei Annahme isotroper Streuung im Schwer-
punktsystem unter Vernachldssigung der Anisotropie
infolge von Kristallinterferenzen

£o~~2/3 A=0,0556
sowie

As=2,55 cm
und

a=0,00124.

Zur Festlegung der Richtungscosinus {; wurde das
{-Intervall von —1 bis +1 in 8 gleiche Teile geteilt;
die {;-Werte wurden jeweils in den Mittelpunkt dieser
Teilintervalle gelegt. Wegen der Unstetigkeit in der
Winkelverteilung fiir {=0 an der Sondenoberfliche
wurden die Integrale (11) fiir die Intervalle

—1<<(<0 und O0<(I< +1

getrennt dargestellt unter Verwendung der Mittelwert-
formeln von MacLavrin®. Man erhilt dann fiir die ;-
Werte und die zugehérigen Gewichtsfaktoren a; :

£iy=+0,125, o= %0,375,
{ig=10,625 {.,=*£0,875;
@.,=0,27083, a.,—0,22917,
115—0,22917, a.,—=0,27083.
Hieraus folgt als charakteristische Gleichung nach (17)
24 —284,58 2% 4+ 203,72 22 — 30,80 + 0,559 =0,

wobei 1/x* =z gesetzt wurde. Mit Hilfe des Newrox-
schen Verfahrens ergaben sich schlieBlich die folgenden
x»-Werte:

%, =0,059352, x,=1,3952, x3=2,344, x,=6,807.
Hieraus wurden die [
f1=0.0040, f,=0,0001, f3=0,0053, f;=0,0000

und schlieBlich die yix bestimmt (Tab. 1).
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Nk : %

N 12 3 | 4
—4 0,9473 0,4502 0,3262 0,1438
—3 | 09618 0,5341 0,4043 0.1903
—2  0,9768 0,6565  0,5311 0,2815
] 09921 = 08515  0,7729 0,5403
=1 1,0080 | 1,2113 14154 6,707
12 | 1,0243 2,0975 8,281  —0,6441
43 | 11,0411 78144 | —2,1577 —0,3073
44 1,0584 | —4,5289 = —0,9559 = —0,2018

Tab. 1.

Fiir eine Sonde mit ¢ 0 =0,12 lautet das Gleichungs-
system (22) mit p,=1/2:
0,6281 C; +0,8852 C,+1,1194 C3+ 6,500 C,=0,3086,
0,3150 C; +1,6208 C,+ 7,895 C3—0,8485 C,=0,1369,
0,2473 C;+ 17,3736 C; —2,4914 C3—0,4643 C,=0,0873,
0,2325 C; —4,9214 C, —1,2403 C3—0,3271 C,=0,0641

mit der Losung:
C,=0,3565, C,=0,00201, C3=0,00400, C,=0,01206.

Damit ist die Neutronenverteilung in der Umgebung
der Sonde nach Gl. (19) bestimmt. Da die in der
Transportgleichung auftretenden Integrale nach dem
Mittelwertverfahren mit acht {-Werten genauer als auf

010 /

4057

z=0

! 0 +

. 1
Abb. 1. Winkelabhidngigkeit des Neutronenflusses an einer
unendlich ausgedehnten Sonde (xd=0,12) in Graphit.
{=cos?® ; —0—0— nach der Transporttheorie berechnete
Werte; — — — Niherung nach der elementaren Diffusions-
theorie; Parameter z : Abstand von der Sondenebene, gemes-

sen in Einheiten von Atot=2,55 cm.
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0,3%0 dargestellt werden, diirfte die Neutronendichte
bzw. die Aktivierung durch das Verfahren genauer als
auf 1% gegeben werden.

In Abb. 1 ist der NeutronenfluB ¥ (z,{) in Ab-
hingigkeit vom Richtungscosinus { fiir verschiedene,
in freien Wegldngen Z;,;=2,55 cm gemessene Ab-
stainde z von der Sonde aufgetragen. Der Verlauf
der Funktionen wurde durch Interpolation zwischen
den berechneten Werten dargestellt. Zum Vergleich
wurde derjenige Neutronenflull eingezeichnet, der
sich nach der elementaren Diffusionstheorie GI. (1)
und (4) ergeben wiirde (gestrichelte Kurve). Un-
mittelbar an der Sondenoberfliche (z=0) ergibt
sich nach der Transporttheorie ein stark anisotropes
Neutronenfeld. Gemifl der Randbedingung Gl. (5)
ist die Zahl der schrdg aus der Sonde austretenden
Neutronen infolge der Wegverlangerung sehr klein
und geht gegen O fiir cos?=0. Die Losung der
elementaren Diffusionstheorie dagegen zeigt ein vol-
lig anderes Verhalten, da die mit dem zweiten Glied
abgebrochene Entwicklung Gl. (4) des Neutronen-
feldes nicht in der Lage ist, diese starke Anisotropie
wiederzugeben. Im Felde der aus der Sonde aus-
tretenden Neutronen (cos¥>0) ist die Abweichung
erheblich, widhrend das Feld der auf die Sonde
auftreffenden Neutronen (cos?<0) durch die ele-
mentare Theorie relativ gut beschrieben wird.

Fir groflere Abstiande von der Sonde (z>2)
gleicht sich die Anisotropie des Neutronenfeldes all-
mahlich aus, und beide Lésungen gehen bis auf
geringe Abweichungen ineinander iiber (fir z>2
sind in der allgemeinen Losung der Transportglei-
chung Gl. (19) die Exponentialfunktionen mit den
Parametern »,=1,395, »%;=2,344 und »,=6,807
bereits hinreichend abgefallen, so daBl das weitere
Verhalten der Losung allein durch den der Dif-
fusionslinge L entsprechenden Parameter %, = A;,/L
bestimmt wird).

Die Darstellung des transporttheoretischen Dichte-
verlaufes in Abb. 2 zeigt der elementaren Losung
gegeniiber eine zusitzliche Dichtedepression in un-
mittelbarer Nahe der Sonde (z<1), verursacht
durch die geringe Durchlédssigkeit der Sonde fiir
schrag laufende Neutronen (siehe Abb.1). Dem-
gemal ergibt sich an der Sonde eine gréBere Dichte-
storung als nach der elementaren Theorie folgen
wiirde.

Die Aktivierungsstérung sollte aber (zumindest
fir die unendlich ausgedehnte Sonde) durch die
elementare Diffusionstheorie recht gut dargestellt
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Abb. 2. Dichteverlauf an einer unendlich ausgedehnten Sonde

(#9=0,12) in Graphit, z=Abstand von der Sondenebene,

gemessen in Einheiten von Atot=2,55cm; ausgezogene

Kurve: Transporttheorie; gestrichelte Kurve:
Diffusionstheorie.

werden, da der Flull der auf die Sonde zu gerich-
teten Neutronen (cos®<0) in Abb.1 von der
diffusionstheoretischen Verteilung nicht wesentlich
abweicht. Um hieriiber einen genaueren Uberblick
zu erhalten, wurde die fir «0=0,12 angedeutete
Rechnung fiir einige weitere Werte von w0 durch-
gefiihrt. Aus der resultierenden Neutronenverteilung
wurden die Dichte- und Aktivierungsstorungen mit
Hilfe von GIn. (23) und (24) berechnet und mit
den Werten nach Gln. (1) und (2) nach Vicon und
Wirrz verglichen.

Die Ergebnisse wurden in Tab. 2 zusammenge-
stellt und in Abb. 3 in Abhingigkeit von w0 auf-
getragen. Man sieht, da} die aus Gl. (1) nach der
elementaren Diffusionstheorie berechnete Dichte-
storung um etwa 15%o unter den transporttheoreti-
schen Werten liegt, wihrend die Abweichung bei
der Aktivierungsstorung nicht grofler als 5% ist.
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Abb. 3. Dichtestorung x(0) und Aktivierungsstorung s
einer unendlich ausgedehnten Scheibensonde. Ausgezogene
Kurven: berechnet nach der Transporttheorie, gestrichelte
Kurven: berechnet nach den Gln. (1) und (2) der
elementaren Diffusionstheorie.

Hieraus kann man allerdings nicht schlieBen, daf}
auch bei einer endlichen Scheibensonde die Akti-
vierungsstorung durch die elementare Diffusions-
theorie mit derselben relativen Genauigkeit dar-
gestellt wird. Die Aktivierungsstérung in einem
Punkte setzt sich ndmlich additiv aus den Beitragen
der einzelnen Sondenelemente zusammen, wobei der
Beitrag der entfernteren Sondenelemente durch die
elementare Theorie exakt beschrieben wird, nicht
aber der Beitrag der nidher benachbarten, deren
Abstand vergleichbar mit Z; ist. Dieser Beitrag ge-
winnt aber an Bedeutung, je kleiner der Sonden-

Transport-Theorie Diff.-Th.

1o vo (0) % (0) i % (0)
0,020 0,6611 0,513 0,4624
0,050 0,4398 1,274 11254
0,070 0,3618 1,764 1.5528
0,100 0,2862 2,494 2,1773
0,120 0,2518 2,971 2,5837
0,150 0,2143 3,666 3.1801
0,200 0,1728 4,79 4,1417
0,300 0.1268 6,89 5.9568
0,400 0,1019 8.81 7.6387
0,500 0,08629 10,59 9.1945

1,000 0,05228 18,13 15.258

x 0,03516 27,44 23.833

Transport-Theorie Diff.-Th.
Oy C xC %C

0,01903 0,01323 0,438 0,435
0,04508 0,02187 1.062 1,029 .
0,06117 0,02497 1,450 1,397
0,08371 0,02825 1,963 1,911
0,09781 0,02969 2,294 2,233
0,11772 0,03109 2,787 2,688
0,14804 0,03293 3,496 3,381
0,19996 0,03503 4,71 4,566
0,2427 0,03662 5,63 5,542
0,2829 0,03737 6,57 6,357
0,3903 0,03836 9,17 8,912
0,5000 0,04032 11,40 11,417

Tab. 2. Dichtestérung #(0) an der Sondenoberfliche, berechnet nach der Transporttheorie und der elememz_iren. Diffusions-
theorie [Gl. (1)]. und Aktivierungsstirung x( , berechnet nach der Transporttheorie und der elementaren Diffusionstheorie

[GL (2)].



RONTGEN-WELLENFELDER IN GROSSEN KALKSPATKRISTALLEN

radius R ist. Die in einer fritheren Arbeit ¢ beschrie-
bene Messung der Aktivierungsstérung von Indium-
folien in Paraffin zeigte, dal im Bereich R/i =2
bis 3 die gemessenen Werte um etwa 30%o iiber
denen der elementaren Diffusionstheorie liegen.
Eine transporttheoretische Rechnung fiir den Fall
der endlichen Scheibensonde ist sehr aufwendig,
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da dann neben 2 Ortskoordinaten auch 2 Winkel-
variable auftreten, d. h. das Neutronenfeld in Son-
dennihe nicht mehr rotationssymmetrisch ist.

Herrn Prof. Wirtz danke ich fiir seine wohlwollende
Unterstiitzung.

6 H. Merster, Z. Naturforschg. 10 a, 669 [1955].

Rontgen-Wellenfelder in groflen Kalkspatkristallen
und die Wirkung einer Deformation

Von G. Borrmany und G. HiLDEBRANDT

Aus dem Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin-Dahlem
(Z. Naturforschg. 11 a, 585—587 [1956] ; eingegangen am 4. Mai 1956)

Die dem Idealkristall eigentiimliche tibernormale Durchlassigkeit fiir Ronxtcen-Strahlen, welche
die v. Lave-Bracesche Interferenzbedingung erfiillen, zeigt sich auch an 3 cm dickem Kalkspat noch
sehr deutlich. Storung des Kristallgitters vermoge eines Temperaturgradienten 1a6t die Reflexe rasch

an Starke verlieren.

Kristallexemplare hoher Wachstumsgiite vermogen
interferierende RONTGEN-Strahlen um viele Grofien-
ordnungen stiarker durchzulassen als der normalen
Absorption entsprechen wiirde!. Hieraus folgt, dal}
die Intensitdt der im Interferenzfall durchgehenden
Strahlung empfindlich abnehmen muf}, wenn das
»ideale® Gitter durch duflere Eingriffe gestort wird.
Wir berichten kurz iiber den groften von uns bisher
gefundenen Unterschied zwischen normaler Durch-
lassigkeit und Durchlassigkeit im Fall der Inter-
ferenz und beschreiben die Wirkung des, experi-
mentell gesehen, wohl einfachsten Eingriffs.

In Abb.1 ist ein von Spaltflichen begrenzter
Kalkspatkristall mit den Kantenldngen 3%, 7 und
7 cm im Schnitt dargestellt. Die zur Spaltflache par-
allele Netzebene erfiillt die Interferenzbedingung
fir die von der Rohre kommende Molybdian-Ka-
Strahlung (2=0,7 A) in erster Ordnung. Die nor-
male Durchléssigkeit, in Richtung senkrecht zur
Oberflache definiert, berechnet sich zu I/ly=e P =
e 70 (oder 1073%), denn der Absorptionskoeffizient
w betrdgt 22 cm ™! nach den Tabellen, und die Dicke
ist D=3.2 cm. Die im dargestellten Interferenzfall
gemessene Durchlassigkeit betrigt e 1 (oder 107%).
(Verglichen wird die Intensitit von R im gezeich-
neten Fall mit der Intensitdt desselben Reflexes bei

1 G. Borrmavny, Z. Phys. 127, 297 [1950].
? G. Borrmany, G. HicpeBranot u. H. Wacner, Z. Phys. 142,
406 [1955].

Spiegelung an der Oberflache, d. h. ohne Absorp-
tion [vgl. Anm.!, S. 304].) Der Kristall zeigt sich
freilich nicht an allen Stellen der Eintrittsfliche so
stark bernormal durchlassig, aber doch, mit klei-
nen Schwankungen, innerhalb grofler Bereiche. Da
die Formeln der dynamischen Theorie auch in die-
sem Fall (wie schon frither %) in die beobachtete
GroBenordnung der Durchlissigkeit fithren, besitzt

Abb.1. Versuchsanordnung: P durch
Blenden begrenzter Primarstrahl;
K Kristall; N Netzebene; Ry, R Re-
flexe, die an der Austrittsfliche aus
dem Zerfall der Wellenfelder ent-
stthen; GM Geicer-MiiLLERsches
Zihlrohr. Von der Facherbildung
im Kristall 2 ist in der Zeichnung ab-
gesehen worden ; eingetragen ist nur
der Strahl lings der reflektierenden
Netzebene.

der Kristall, so dick er ist, in seinen besten Teilen
ein RONTGEN-optisch nahezu vollkommenes Gitter.
Dall es doch Fehler hat, beweisen die erwihnten
kleinen Schwankungen der Intensitidt besser als der
Vergleich mit den Formeln, die sich zur Zeit nur

3 P.B. Hirscu, Acta Cryst. 5, 176 [1952].
4 W. H. Zacuariasen, Proc. Nat. Acad. Sci., Wash. 38. 378
[1952].



