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Numerische Berechnung der Störung einer unendlich ausgedehnten 

scheibenförmigen Neutronensonde nach der Transporttheorie 
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Aus dem Max-Planck-Institut für Physik, Göttingen 
(Z. Naturforschg. 11 a, 5 7 9 — 5 8 5 [1956] ; eingegangen am 22. März 1956) 

Es wird die Winkelverteilung des Neutronenfeldes in der Umgebung einer unendlich ausgedehn-
ten Sonde sowie deren Aktivierungs- und Dichtestörung in Abhängigkeit von der Sondendicke be-
rechnet nach einem Verfahren, das von W I C K für ein isotropes Streugesetz angegeben worden ist. 
Die Ergebnisse werden mit den nach der elementaren Diffusionstheorie gefundenen verglichen. 

Nach der elementaren Diffusionstheorie wurde 
von V I G O N und W I R T Z 1 für eine unendlich ausge-
dehnte Scheibensonde als Dichtestörung 

-£>(Z) 3 L 
x(z) = 2 2 (1) -$0(t*d) h 

gefunden (q0 = ungestörte Neutronendichte, q(z) = 
durch die Sonde gestörte Dichte, £>s = Dichte an der 
Sondenoberfläche) und als Aktivierungsstörung 

« e - ^ f H i H } *.(/•*> (2) 

(C0 = die dem ungestörten Neutronenfeld entspre-
chende Aktivierung, C = wirkliche Aktivierung im 
gestörten Feld). Hierbei ist z die Ortskoordinate 
senkrecht zur Sondenebene, die Transportweg-
länge und L die Diffusionslänge des die Sonde um-
gebenden Streumediums sowie &0(juÖ) die von 
B O T H E 2 angegebene Funktion 

&0(juö) = l - {l-juö)e~flS + ju2d2Ei(-jud) 
(3) 

der Schichtdicke d und des Absorptionskoeffizien-
ten ju der Sondensubstanz. „Unendlich ausgedehnt" 
heißt hier, daß die Ausdehnung der Sonde groß 
gegen die Diffusionslänge ist. 

Die elementare Diffusionstheorie beschränkt sich 
bei der Entwicklung des differentiellen Neutronen-
flusses K(z,'&) nach Kugelfunktionen auf die beiden 
ersten Glieder, so daß bei Angabe des Dichtever-

laufes auch die Winkelverteilung des Neutronen-
feldes festgelegt ist: 

K(z,ft) ~ O V 4 71 U 
, d(o v) At , cos ft} 

dz (4) 

Dabei ist ft der Winkel zwischen der Neutronen-
richtung und der positiven z-Achse. Die Absorp-
tionswahrscheinlichkeit für ein Neutron, das die 
Sonde unter dem Winkel ft durchsetzt, ist /̂l cos i? I 

bei Vernachlässigung der Streuung in der Sonden-
substanz. Wird das Neutronenfeld als symmetrisch 
zur Sondenebene z = 0 vorausgesetzt, so muß es auf 
der Sondenoberfläche gegen den Halbraum z > 0 die 
Randbedingung 

K(0,x-ß) (0 < ft j 2) (5) 

erfüllen. Hierzu ist aber der elementare Ansatz 
Gl. (4) nicht imstande. 

Zu einer genaueren Berechnung des Neutronen-
feldes in der Sondenumgebung muß daher auf die 
Transportgleichung 

Q grad K(r, Ö) + 2toi K(r, Q) 

= j2{Q,Q')K{7,Q')<{Q' (6) 

h' 

(r = Ortsvektor, Q = Einheitsvektor der Neutronen-
richtung, Jftot = totaler makroskopischer Wirkungs-
querschnitt, ) = differentieller Streuquer-
schnitt) zurückgegriffen werden, die die Winkel-
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abhängigkeit des Neutronenfeldes explizit berück-
sichtigt. Für den vorliegenden eindimensionalen Fall 
vereinfacht sich diese Gleichung zu 3 

W i z , t ) , y XJJ(7 4 — + — tot 1 \z, dz 
°o +1 

- Z 2 T 1 ->P/{:) f W { z - r ) P t { - ) ' ^ 
1 = 0 -1 

wobei 2 n K (z, #) = W (z, t ) und c o s $ = t gesetzt 
wurde. Der differentielle Streuquerschnitt ) 
in Gl. (6) hängt nur vom Cosinus (Q, Q ' ) = to des 
Streuwinkels ab und ist in Gl. (7) bereits nach 
Kugelfunktionen P/(to) entwickelt worden: 

— / = 2 -t f J f ( t 0 ) P,(to) d : 0 . 
-1 

Berücksichtigt man nur die beiden ersten Glieder 
+i 

— o = 2 -"T f V(C0) d : 0 = J f s , 
-1 

T 1 

= 2 ti f y(£0)£0d£0 = £0Zs, (8) 
- l 

( 2 a = makroskopischer Streuquerschnitt, t0 = mitt-
lerer Cosinus des Streuwinkels) und wählt die mitt-
lere freie Weglänge / t o t = l/-T tot als Längeneinheit 
mit 

a = 2 V v t 0 t = / t 0 t / 4 , ( 9 ) 

so lautet die Transportgleichung 
+ i +i 

t + v (z, o = 1 j 2 { / y (z, n a r + 3 t t0 f r w r > a r j . (i<» 
-1 -1 

1. Mit verhältnismäßig geringem Rechenaufwand kann man eine gute Näherungslösung dieser Integro-
differentialgleichung gewinnen, wenn man die Integrale nach dem Mittelwertverfahren durch Summen dis-
kreter Funktionswerte approximiert4. An Stelle der Funktion W(z, i) der Orts- und Winkelvariablen wer-
den 2 n Funktionen z) (i— + 1 . . . ± n) der Ortskoordinate z eingeführt, die den Neutronenfluß an 
der Stelle z mit der Richtung t im Intervall um ti angeben. Die Integrale in Gl. (10) werden dann 
durch gewogene Summen der F\ dargestellt: 

/ V ( z , r ) d r = 2 ^ ^ ' I ? *(*» ̂ = Z & ^ (*) • 11) 
— 1 j = —n —1 j=— n 0 0 

Dabei erfüllen die Gewichtsfaktoren a, unter anderem die Relationen0 

n n 

!> Z ai^i2= 1/3 -
i=l i=l 

Die Transportgleichung (10) geht dadurch in ein System von 2 n linearen homogenen Differentialgleichun-
gen erster Ordnung über: 

d -i(2) + T-Az) = 1 ; a { V aj T,(z) + 3 ti Co 2 b ± 1 . . . ± » ) • (12) dz 
j=-n ]=-n 

0 J*0 
Durch den Exponentialansatz xlJt{z) = c, e yZ läßt sich dieses System auf das lineare Gleichungssystem für 
die ei + n +„ 

(1 - * ti) ci= 1 2 0 { Z ai Cj + 3 ti t0 Z a i c ; } = ± 1 • • • ± n ) (13) 
j= — n j=~n 
i* o ;=o 

zurückführen, das sich leicht lösen läßt, da die Summen auf der rechten Seite nicht von i abhängen. Setzt 
man + n + n 

1-a V r 3 d - a ) 7- V p (ia\ 
j=—n ' — — n 
j* 0 J=#0 

3 S. GLASSTONE U . M. C . E D L U N D , The Elements of Nuclear 5 Fr. A. W I L L E R S , Methoden der praktischen Analysis, de 
Reactor Theory, MacMillan. London 1953, p. 389. Gruyter. Berlin 1950. 

4 G . C . W I C K . Z . Phys. 1 2 1 , 702 [ 1 9 4 3 ] . 



so können die Unbekannten ct durch die gemeinsamen Größen C, B und ^ ausgedrückt werden: 

ci = C i + V B - (15) 1 — - ; * 

Es soll zunächst die Abfallkonstante x der Exponentialfunktion so bestimmt werden, daß das Gleichungs-
system (13) eine nichttriviale Lösung für die Unbekannten ct hat. Dies ist nach Gl. (15) genau dann der 
Fall, wenn die Konstanten C und B nicht beide verschwinden. Durch Einsetzen von Gl. (15) in Gl. (13) 
ergibt sich die Beziehung 

L - a | Y aj(C + CjB) 3 „ „ V aj£j(C + tiB) \ 
2 Z _ J 1 - C j x 1 ( 

w=— n j = —n ) ;+o y+o 

die für alle ti identisch erfüllt sein muß. Koeffizientenvergleich in bezug auf 4; führt auf das homogene 
Gleichungssystem für die beiden Unbekannten C und B: 

C + hB, 

\/=l j=l 
n r n \ 

C y aitfx + B y ajtf ' 1 \ Q 

Z ^ l - C f x * ^ 1 - C i 2 « 2 3 f o ( l - a ) / j=\ \j=1 

Dabei wurde vorausgesetzt, daß die Werte der 
Winkelvariablen Cj symmetrisch zu 4 = 0 gewählt 
worden sind ( t - y = —Cj), und es wurden je zwei 
entsprechende Summanden zusammengefaßt. 

Die Konstanten C und B können nur dann gleich-
zeitig von Null verschieden sein, wenn die Determi-
nante des Systems (16) verschwindet. Aus dieser 
Forderung ergibt sich nach elementarer Umrechnung 
die Gleichung 

n 
(1 _ a ) y « / U ± 3 t o l / a ) = j _ ( 1 7 ) 

l — C R X2 

i=i 

Dies ist die gesuchte Bestimmungsgleichung für den 
Parameter der Exponentialfunktion. Wie man leicht 
sieht, hat diese Gleichung rc-ten Grades genau n 
positiv-reelle Wurzeln für x2, liefert also n Paare 
von ^-Werten, die sich jeweils nur durch ihr Vor-
zeichen unterscheiden. Die allgemeine Lösung setzt 
sich daher additiv aus 2 n Exponentialfunktionen 
mit den entsprechenden Abfallkonstanten xk zu-
sammen : 

r n _ 

'I'-Az) = Ycfce-"*', 
Z _ J 1 - , I X K 

k= —n 
k 4=0 

Die von der Wurzel xk abhängigen Koeffizienten c-,, 
C und B haben dabei einen zusätzlichen Index k 
erhalten (k = ± 1 . . . in). 

Durch das Gleichungssystem (16) ist für ein be-
stimmtes xk das Verhältnis 

3 - V 

HS) 
1 >- V A > - R 

l - a 0 -:>»**« 
/=i 

festgelegt. Der Wert des Koeffizienten Ck bleibt noch 
frei verfügbar. Die allgemeine Lösung hat daher 
die Form 

+ n 
Tt{z) = Yck yik e " " * ' , yik = . (19) 

l 1 1 — - i Xk 
k= —n 
jfc4=0 

Durch Vorgabe eines bestimmten Streumediums 
mit 

1 y 
1 — a /tot 

und Wahl der Neutronenrichtungen Ci mit den zu-
gehörigen Gewichtsfaktoren at sind die Größen xk, 
ßk und yik ein für allemal festgelegt. Für ein speziel-
les Problem sind dann nur die Koeffizienten Ck an 
die geforderten Randbedingungen anzupassen. Die 
Rechnung vereinfacht sich natürlich sehr wesentlich 
für den Fall isotroper Streuung (£0 = 0 ) , wie er 
z. B. bei W I C K 4 durchgeführt worden ist. In diesem 
Fall werden die ßk = 0 . 



Die Genauigkeit dieses Verfahrens ist durch die 
Genauigkeit gegeben, mit der die Integrale nach 
dem Mittelwertverfahren dargestellt werden. 

2. Nach diesem Verfahren wird nun die Neutronen-
verteilung an einer unendlich ausgedehnten Sonde 
bestimmt. Das ungestörte Feld F 0 sei isotrop und 
unabhängig von z. Es genügt der zu Gl. (10) ge-
hörigen inhomogenen Gleichung mit einer konstan-
ten räumlichen Quelldichte und wird so normiert. 

+1 
daß der skalare Neutronenfluß v £>0 = / d t den 

- l 
Wert Eins hat, d. h. l l \ = 1/2 ist. 

Der bei Anwesenheit der Sonde in der Ebene 2 = 0 
sich einstellende Neutronenfluß setzt sich wegen der 
Linearität der Transportgleichung additiv zusammen 
aus dem ungestörten Fluß 1Fq und dem „Störfluß" 
A F (2, t ) , der der homogenen Transportgleichung 
(10) genügt: 

V(z,C) = V0-AV(z,C). (20) 

Wegen der Symmetrie der Neutronenverteilung zu 
2 = 0 kann man sich auf die Betrachtung des rechten 
Halbraumes beschränken. Da die ungestörte Neu-
tronenverteilung fest vorgegeben ist, muß sich das 
Störfeld so einstellen, daß die Randbedingung Gl. 
(5) an der Sonde erfüllt ist: 

A V (0, C) - e~ft K • A V (0, - 0 

= ( l _ e - " W ) C > 0 ) . (21) 

Wird für das Störfeld die allgemeine Lösung 
Gl. (19) der Transportgleichung eingesetzt, so er-
gibt sich ein inhomogenes Gleichungssystem zur 
Bestimmung der freien Konstanten Ck 

fe=1 = (1 - e~" d / : 0 '/'o (e = 1 . . . n ) . 

Das Störfeld A X1J (z, ; ) muß für hinreichend großes 2 
gegen Null gehen, daher fallen die Glieder mit ne-
gativem y. in der allgemeinen Lösung für 2 > 0 fort 
und es ist in Gl. (22) nur über positive k zu sum-
mieren. 

Hat man die Konstanten C k aus Gl. (22) be-
stimmt, so ist dadurch der Neutronenfluß nach Gl. 
(19) festgelegt. Durch einfache Summation erhält 
man die Neutronendichte 

+ 1 fn 
Qv= f W{z, 0 dC = lFi{z) (23) 

- 1 1 = — n 
i=l=0 

und entsprechend die in der Sonde hervorgerufene 
Aktivierung 1 

0 
C = 2- f 'I' (0, 4) | f | ( l - e - " d / l ' l ) d t (24) 

n 
= ' / ' _ , ( 0 ) (1 -e-^'U). 

i=i 

Aus diesen Werten lassen sich die Sondenstörungen 
nach Gl. (1) und (2 ) leicht berechnen. 

3. Es wurde die Neutronenverteilung an Sonden 
verschiedener Dicke {ju d zwischen 0,02 und 1,0) be-
rechnet. Als Streumedium wurde Graphit mit folgen-
den Eigenschaften zugrunde gelegt: 

Transportweglänge At = 2,7 cm 
(entspr. Dichte = 1,6 g/cm3) , 

Diflusionslänge L = 42,9 cm, 
Atomgewicht A = 12 

Hieraus erhält man den mittleren Cosinus des Streu-
winkels Co bei Annahme isotroper Streuung im Schwer-
punktsystem unter Vernachlässigung der Anisotropie 
infolge von Kristallinterferenzen 

f o ~ 2 / 3 A = 0,0556 
sowie 

As = 2,55 cm 
und 

a = 0,00124. 
Zur Festlegung der Richtungscosinus £t wurde das 

C-Intervall von — 1 bis -f 1 in 8 gleiche Teile geteilt; 
die Werte wurden jeweils in den Mittelpunkt dieser 
Teilintervalle gelegt. Wegen der Unstetigkeit in der 
Winkelverteilung für £" = 0 an der Sondenoberfläche 
wurden die Integrale (11) für die Intervalle 

- 1 < £ < 0 und 0 < C < + 1 

getrennt dargestellt unter Verwendung der Mittelwert-
formeln von M A C L A U R I N 5 . Man erhält dann für die 
Werte und die zugehörigen Gewichtsfaktoren a; : 

£ ± 1 = ±0,125, £ ± 2 = ±0 ,375 , 

C±3= ± 0,625, ; ± 4 = ± 0,875; 

a ± 1 = 0,27083, a ± 2 = 0,22917, 

a ± 3 = 0,22917, a ± 4 = 0,27083. 

Hieraus folgt als charakteristische Gleichung nach (17) 
x4 - 284,58 x3 + 203,72 x2 - 30,80 x + 0,559 = 0 , 

wobei 1 [ — x gesetzt wurde. Mit Hilfe des N E W T O N -

schen Verfahrens ergaben sich schließlich die folgenden 
*-Werte: 

* t = 0,059352, x2 = 1,3952, = 2,344, x4 = 6,807. 

Hieraus wurden die ßk 

ßx = 0,0040, = 0,0001, ßs = 0,0053, ßA = 0.0000 

und sdiließlich die y,k bestimmt (Tab. 1). 



\ k 
i 

1 2 3 4 

- 4 0,9473 0,4502 0,3262 0,1438 
- 3 0,9618 0,5341 0,4043 0,1903 
_ 2 0,9768 0,6565 0,5311 0,2815 
- 1 0,9921 0,8515 0,7729 0,5403 
+ 1 1,0080 1,2113 1,4154 6,707 
+ 2 1,0243 2,0975 8,281 —0.6441 
+ 3 1,0411 7,8144 - 2 , 1 5 7 7 - 0 , 3 0 7 3 
+ 4 1,0584 - 4 , 5 2 8 9 - 0 , 9 5 5 9 - 0 , 2 0 1 8 

Tab. 1. 

Für eine Sonde mit ^ 5 = 0,12 lautet das Gleichungs-
system (22) mit ip0 = 1 /2 : 

0,6281 Ct + 0,8852 C2 + 1,1194 C3 + 6,500 C4 = 0,3086, 
0,3150 Ci +1,6208 C2 + 7,895 C3 - 0,8485 C4 = 0,1369, 
0,2473 Ct + 7,3736 C2 - 2,4914 C3 - 0,4643 C4 = 0,0873, 
0,2325 C1 - 4,9214 C2 - 1,2403 C3 - 0,3271 C4 = 0,0641 

mit der Lösung: 

Ct = 0,3565, C2 = 0,00201, C3 = 0,00400, C4 = 0,01206. 

Damit ist die Neutronenverteilung in der Umgebung 
der Sonde nach Gl. (19) bestimmt. Da die in der 
Transportgleichung auftretenden Integrale nach dem 
Mittelwertverfahren mit acht £";-Werten genauer als auf 

Abb. 1. Winkelabhängigkeit des Neutronenflusses an einer 
unendlich ausgedehnten Sonde (u 6 = 0,12) in Graphit. 
£ = cos # ; — o —O— nach der Transporttheorie berechnete 
Werte; Näherung nach der elementaren Diffusions-
theorie ; Parameter z : Abstand von der Sondenebene, gemes-

sen in Einheiten von Atot = 2,55 cm. 

0,3°/o dargestellt werden, dürfte die Neutronendichte 
bzw. die Aktivierung durch das Verfahren genauer als 
auf 1%> gegeben werden. 

In Abb. 1 ist der Neutronenfluß rlf (z, s ) in Ab-
hängigkeit vom Richtungscosinus £ für verschiedene, 
in freien Weglängen / t o t = 2,55 cm gemessene Ab-
stände z von der Sonde aufgetragen. Der Verlauf 
der Funktionen wurde durch Interpolation zwischen 
den berechneten Werten dargestellt. Zum Vergleich 
wurde derjenige Neutronenfluß eingezeichnet, der 
sich nach der elementaren Diffusionstheorie Gl. (1) 
und (4) ergeben würde (gestrichelte Kurve). Un-
mittelbar an der Sondenoberfläche (z = 0) ergibt 
sich nach der Transporttheorie ein stark anisotropes 
Neutronenfeld. Gemäß der Randbedingung Gl. (5) 
ist die Zahl der schräg aus der Sonde austretenden 
Neutronen infolge der Wegverlängerung sehr klein 
und geht gegen 0 für cos # = 0 . Die Lösung der 
elementaren Diffusionstheorie dagegen zeigt ein völ-
lig anderes Verhalten, da die mit dem zweiten Glied 
abgebrochene Entwicklung Gl. (4) des Neutronen-
feldes nicht in der Lage ist, diese starke Anisotropie 
wiederzugeben. Im Felde der aus der Sonde aus-
tretenden Neutronen ( c o s $ > 0 ) ist die Abweichung 
erheblich, während das Feld der auf die Sonde 
auftreffenden Neutronen ( c o s # < 0 ) durch die ele-
mentare Theorie relativ gut beschrieben wird. 

Für größere Abstände von der Sonde (z > 2 ) 
gleicht sich die Anisotropie des Neutronenfeldes all-
mählich aus, und beide Lösungen gehen bis auf 
geringe Abweichungen ineinander über (für z > 2 
sind in der allgemeinen Lösung der Transportglei-
chung Gl. (19) die Exponentialfunktionen mit den 
Parametern x2 = 1,395, x3 = 2 ,344 und x4 = 6,807 
bereits hinreichend abgefallen, so daß das weitere 
Verhalten der Lösung allein durch den der Dif-
fusionslänge L entsprechenden Parameter xx = AtotjL 
bestimmt wird) . 

Die Darstellung des transporttheoretischen Dichte-
verlaufes in Abb. 2 zeigt der elementaren Lösung 
gegenüber eine zusätzliche Dichtedepression in un-
mittelbarer Nähe der Sonde ( z < l ) , verursacht 
durch die geringe Durchlässigkeit der Sonde für 
schräg laufende Neutronen (siehe Abb. 1 ) . Dem-
gemäß ergibt sich an der Sonde eine größere Dichte-
störung als nach der elementaren Theorie folgen 
würde. 

Die Aktivierungsstörung sollte aber (zumindest 
für die unendlich ausgedehnte Sonde) durch die 
elementare Diffusionstheorie recht gut dargestellt 
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Abb. 2. Dichteverlauf an einer unendlich ausgedehnten Sonde 
(/u (3 = 0,12) in Graphit, z = Abstand von der Sondenebene, 
gemessen in Einheiten von Atot = 2 , 5 5 c m ; ausgezogene 

Kurve: Transporttheorie; gestrichelte Kurve: 
Diffusionstheorie. 

werden, da der Fluß der auf die Sonde zu gerich-
teten Neutronen ( c o s $ < 0 ) in Abb. 1 von der 
diffusionstheoretischen Verteilung nicht wesentlich 
abweicht. Um hierüber einen genaueren Überblick 
zu erhalten, wurde die für //<3 = 0,12 angedeutete 
Rechnung für einige weitere Werte von u ö durch-
geführt. Aus der resultierenden Neutronenverteilung 
wurden die Dichte- und Aktivierungsstörungen mit 
Hilfe von Gin. (23) und (24) berechnet und mit 
den Werten nach Gin. (1) und (2) nach V I G O N und 
W I R T Z verglichen. 

Die Ergebnisse wurden in Tab. 2 zusammenge-
stellt und in Abb. 3 in Abhängigkeit von ju b auf-
getragen. Man sieht, daß die aus Gl. (1) nach der 
elementaren Diffusionstheorie berechnete Dichte-
störung um etwa 15°/o unter den transporttheoreti-
schen Werten liegt, während die Abweichung bei 
der Ahtivierungsstörung nicht größer als 5%> ist. 

4 

z 

Abb. 3. Dichtestörung * ( 0 ) und Aktivierungsstörung %c 
einer unendlich ausgedehnten Scheibensonde. Ausgezogene 
Kurven: berechnet nach der Transporttheorie, gestrichelte 

Kurven: beredinet nach den Gin. (1) und (2) der 
elementaren Diffusionstheorie. 

Hieraus kann man allerdings nicht schließen, daß 
auch bei einer endlichen Scheibensonde die Akti-
vierungsstörung durch die elementare Diffusions-
theorie mit derselben relativen Genauigkeit dar-
gestellt wird. Die Aktivierungsstörung in einem 
Punkte setzt sich nämlich additiv aus den Beiträgen 
der einzelnen Sondenelemente zusammen, wobei der 
Beitrag der entfernteren Sondenelemente durch die 
elementare Theorie exakt beschrieben wird, nicht 
aber der Beitrag der näher benachbarten, deren 
Abstand vergleichbar mit / t ist. Dieser Beitrag ge-
winnt aber an Bedeutung, je kleiner der Sonden-

Transport-Theorie Diff.-Th. Transport-Theorie Diff.-Th. 

nö vo (0) y.( 0) | *(0) Co C y.c y.c 

0,020 0,6611 0,513 0,4624 0,01903 0.01323 0,438 0,435 
0,050 0.4398 1,274 1.1254 0,04508 0,02187 1.062 1,029 
0,070 0.3618 1.764 1,5528 0,06117 0,02497 1,450 1,397 
0,100 0.2862 2.494 2,1773 0,08371 0,02825 1.963 1,911 
0,120 0.2518 2.971 2,5837 0.09781 0.02969 2.294 2,233 
0,150 0,2143 3,666 3.1801 0,11772 0,03109 2,787 2,688 
0,200 0.1728 4,79 4.1417 0.14804 0,03293 3.496 3,381 
0,300 0.1268 6,89 5.9568 0,19996 0,03503 4,71 4,566 
0,400 0,1019 8.81 7.6387 0,2427 0,03662 5,63 5,542 
0,500 0,08629 10,59 9.1945 0,2829 0,03737 6.57 6.357 
1,000 0,05228 18,13 15.258 0,3903 0.03836 9.17 8,912 
X 0.03516 27.44 23.833 0,5000 0.04032 11,40 11,417 

Tab. 2. Dichtestörung y.(0) an der Sondenoberfläche, berechnet nach der Transporttheorie und der elementaren Diffusions-
theorie [Gl. ( 1 ) ] . und Aktivierungsstörung y.c , berechnet nach der Transporttheorie und der elementaren Diffusionstheorie 

[Gl. ( 2 ) ] . 



radius R ist. Die in einer früheren Arbeit 6 beschrie-
bene Messung der Aktivierungsstörung von Indium-
folien in Paraffin zeigte, daß im Bereich /?/ / t = 2 
bis 3 die gemessenen Werte um etwa 3 0 % über 
denen der elementaren Dilfusionstheorie liegen. 

Eine transporttheoretische Rechnung für den Fall 
der endlichen Scheibensonde ist sehr aufwendig, 

da dann neben 2 Ortskoordinaten auch 2 Winkel-
variable auftreten, d. h. das Neutronenfeld in Son-
dennähe nicht mehr rotationssymmetrisch ist. 

Herrn Prof. W I R T Z danke ich für seine wohlwollende 
Unterstützung. 

6 H . M E I S T E R , Z . Naturforschg. 1 0 a , 6 6 9 [ 1 9 5 5 ] , 

Röntgen-Wellenfelder in großen Kalkspatkristallen 

und die Wirkung einer Deformation 

V o n G . B O R R M A N N u n d G . H I L D E B R A N D T 

Aus dem Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin-Dahlem 
(Z. Naturforschg. 11 a, 5 8 5 — 5 8 7 [1956] ; eingegangen am 4. Mai 1956) 

Die dem Idealkristall eigentümliche übernormale Durchlässigkeit für RöNTGEN-Strahlen, welche 
die v. L A U E - B R A G G S C H E Interferenzbedingung erfüllen, zeigt sich auch an 3 cm dickem Kalkspat noch 
sehr deutlich. Störung des Kristallgitters vermöge eines Temperaturgradienten läßt die Reflexe rasch 
an Stärke verlieren. 

Kristallexemplare hoher Wachstumsgüte vermögen 
interferierende RöNTGEN-Strahlen um viele Größen-
ordnungen stärker durchzulassen als der normalen 
Absorption entsprechen würde 1. Hieraus folgt, daß 
die Intensität der im Interferenzfall durchgehenden 
Strahlung empfindlich abnehmen muß, wenn das 
„ideale" Gitter durch äußere Eingriffe gestört wird. 
Wir berichten kurz über den größten von uns bisher 
gefundenen Unterschied zwischen normaler Durch-
lässigkeit und Durchlässigkeit im Fall der Inter-
ferenz und beschreiben die Wirkung des, experi-
mentell gesehen, wohl einfachsten Eingriffs. 

In Abb. 1 ist ein von Spaltflächen begrenzter 
Kalkspatkristall mit den Kantenlängen 7 und 
7 cm im Schnitt dargestellt. Die zur Spaltfläche par-
allele Netzebene erfüllt die Interferenzbedingung 
für die von der Röhre kommende Molybdän-Ka-
Strahlung (A = 0 , 7 Ä ) in erster Ordnung. Die nor-
male Durchlässigkeit, in Richtung senkrecht zur 
Oberfläche definiert, berechnet sich zu / / / 0 = e _ i"D = 
e - 7 0 (oder 10~3 0) , denn der Absorptionskoeffizient 
u beträgt 22 c m - 1 nach den Tabellen, und die Dicke 
ist D = 3,2 cm. Die im dargestellten Interferenz fall 
gemessene Durchlässigkeit beträgt e - 1 0 (oder 10~4) . 
(Verglichen wird die Intensität von R im gezeich-
neten Fall mit der Intensität desselben Reflexes bei 

1 G. BORRMANN , Z. Phys. 127, 2 9 7 [ 1 9 5 0 ] . 
1 G. BORRMANN , G. HILDEBRANDT U . H . W A G N E R , Z. Phys. 142. 

4 0 6 [ 1 9 5 5 ] . 

Spiegelung an der Oberfläche, d. h. ohne Absorp-
tion [vgl. Anm.1 , S. 304] . ) Der Kristall zeigt sich 
freilich nicht an allen Stellen der Eintrittsfläche so 
stark übernormal durchlässig, aber doch, mit klei-
nen Schwankungen, innerhalb großer Bereiche. Da 
die Formeln der dynamischen Theorie auch in die-
sem Fall (wie schon früher 3 - 4 ) in die beobachtete 
Größenordnung der Durchlässigkeit führen, besitzt 

A b b . l . Versuchsanordnung: P durch 
Blenden begrenzter Primärstrahl; 
K Kristall; N Netzebene; R0 , R Re-
flexe, die an der Austrittsfläche aus 
dem Zerfall der Wellenfelder ent-
stehen; GM GEIGER-MÜLLERScheS 

Zählrohr. Von der Fächerbildung 
im Kristall2 ist in der Zeichnung ab-
gesehen worden; eingetragen ist nur 
der Strahl längs der reflektierenden 

Netzebene. 

der Kristall, so dick er ist, in seinen besten Teilen 
ein RöNTGEN-optisch nahezu vollkommenes Gitter. 
Daß es doch Fehler hat, beweisen die erwähnten 
kleinen Schwankungen der Intensität besser als der 
Vergleich mit den Formeln, die sich zur Zeit nur 

3 P . B . H I R S C H , Acta Cryst. 5 , 1 7 6 [ 1 9 5 2 ] . 
4 W. H. ZACHARIASEN, Proc. Nat. Acad. Sei., Wash. 38, 378 

[ 1 9 5 2 ] . 


